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Sample Solutions for Issued May 2001 Written Test

1. A. If we substitute x = y + t into the equation

0 = x3 + ax2 + bx+ c,

the equation transforms into

0 = (y + t)3 + a (y + t)2 + b (y + t) + c

= y3 + (3t+ a) y2 +
¡
3t2 + 2at+ b

¢
y +

¡
t3 + at2 + bt+ c

¢
,

which has the required form 0 = y3 + py + q if 3t+ a = 0. Hence we need t = −a/3 and the answer is (b).

B. We are told that three faces of a cube are coloured red, and the other three coloured blue. As we can orient the
cube however we please, we can assume that the uppermost face is red. If the bottom face is also red then exactly one
of the side faces will also be red. In this case the three red faces form a C, vice-like around the side of the cube, while
the three blue faces form a second C.

If the bottom face isn’t red, then exactly two of the side faces must be red. These two faces are either adjacent or
opposite. If they are opposite, then we are again in the situation of having two different coloured Cs around the cube.
If they are adjacent, then the three red faces are all around one corner of the cube, with the three blue faces adjacent
to the opposite corner.

So without knowing the orientation of the cube, all we can say is that the red and blue faces either form two clasping
Cs, or they are the faces adjacent to two opposite vertices. There are two configurations and the answer is (a).

Opposite corners Clasping Cs

C. Consider the line 3x+ 4y = 25. It has gradient −3/4, and so the gradient of a line normal to it will have gradient
4/3. The line through the origin with gradient 4/3 is 3y = 4x. If we solve these simultaneous equations we see that
the two lines meet at (3, 4) . This is at distance p

32 + 42 =
√
25 = 5

from the origin and so the answer is (c).
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D. The cubic equation
(x− α) (x− β) (x− γ) = 0

expands out to become
x3 − (α+ β + γ)x2 + (αβ + βγ + γα)x− αβγ = 0.

So we see that the sum of the roots is negative the coefficient of the x2 term, and the product of the roots is negative
the constant coefficient.

In our case the roots are 10, 11,−12, and so
coefficient of x2 = − (10 + 11− 12) = −9,

constant coefficient = − (10× 11×−12) = 1320,
and of the given possibilities there is only one such and so the answer is (c).

E. The gradient (i.e. the derivative) of the curve y = x4 − 4x3 + 4x2 + 2 is

gradient =
dy
dx

= 4x3 − 12x2 + 8x = 4x (x− 1) (x− 2) .
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In the interval 0 ≤ x ≤ 215 the gradient will attain its maximum either at an endpoint (0 or 215), or at a maximum
turning point. Note

gradient (0) = 0,

gradient
µ
2
1

5

¶
= 4× 11

5
× 6
5
× 1
5
=
264

125
> 2.

As the gradient is a cubic in x, with a positive leading coefficient and roots 0, 1, 2, then from our knowledge of the
graph of a cubic, we see the gradient will have a maximum turning point between x = 0 and x = 1, and a minimum
turning point between x = 1 and x = 2. To find these points we need to differentiate the gradient – so

d (gradient)
dx

=
d2y
dx2

= 12x2 − 24x+ 8 = 12
µ
(x− 1)2 − 1

3

¶
,

which we see equals zero at 1+ 1√
3
and 1− 1√

3
. Our maximum turning point is then at x = 1− 1√

3
and the corresponding

gradient is

gradient
µ
1− 1√

3

¶
= 4

µ
1− 1√

3

¶µ
−1√
3

¶µ
−1− 1√

3

¶
=

8

3
√
3
< 2.

Finally, having considered all the possibilities, we see that the maximum gradient is at x = 215 . The answer is (d).

F. The expression
x2y + xy2 + y2z + yz2 + z2x+ zx2 − x3 − y3 − z3 − 2xyz

is symmetric in the variables x, y and z. That is, if we replace x, y, z with some rearrangement of x, y, z (say we replace
x with y, y with z and z with x) then the expression will remain the same. As this is the case then this will also be
true of any factorisation of the expression.

Now factoristion (a) isn’t symmetric because it contains the bracket (x− y + z) , but not the factor (x+ y − z) –
from a swap of y and z. Similarly, factorisation (b) isn’t symmetric, as it contains the factor (x+ y − z) , but not the
factor (x− y + z) . Factorisations (c) and (d) are symmetric, (they are negative one another), but if we look for the
coefficients of the x3 term in each of these we see that it is −1 in (c) and 1 in (d). Hence the answer is (c).
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G. By the product rule

d
dx
(uvw) =

du
dx

vw + u
d
dx
(vw)

=
du
dx

vw + u
dv
dx

w + uv
dw
dx

,

and the chain rule, we see

d
dx

µ
xe−x

2

cos

µ
1

x

¶¶
= 1× e−x

2 × cos
µ
1

x

¶
+ x×−2xe−x2 × cos

µ
1

x

¶
+ x× e−x

2 × −1
x2
(− sin)

µ
1

x

¶
= e−x

2

cos

µ
1

x

¶
− 2x2e−x2 cos

µ
1

x

¶
+
1

x
e−x

2

sin

µ
1

x

¶
,

and so we see that the answer is (b).

H. We are told the sums of two infinite sums, namely

12 +
1

22
+
1

32
+
1

42
+ · · · =

π2

6
,

12 +
1

32
+
1

52
+
1

72
+ · · · =

π2

8
.

So

1

22
+
1

42
+
1

62
+ · · · =

µ
12 +

1

22
+
1

32
+
1

42
+ · · ·

¶
−
µ
12 +

1

32
+
1

52
+
1

72
+ · · ·

¶
=

π2

6
− π2

8
=

π2

24
,

and

12 − 1

22
+
1

32
− 1

42
+ · · · =

µ
12 +

1

32
+
1

52
+
1

72
+ · · ·

¶
−
µ
1

22
+
1

42
+
1

62
+ · · ·

¶
=

π2

8
− π2

24
=

π2

12
,

and we see the answer is (c). (It is possible to answer this question only knowing the first sum – how would you
do this?)

I. Using the grid, which has sides 3 and 5, we may draw squares that are 1 by 1, or 2 by 2, or 3 by 3. There are
3× 5 = 15 unit squares, 2× 4 = 8 squares of side 2, and 1× 3 = 3 squares of side 3 and so the total number of squares
is

15 + 8 + 3 = 26,

and we see the answer is (c).

A 1× 1 square A 2× 2 square A 3× 3 square
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J. We shall call the four players in this game A,B,C,D, and call the two identical cards a and b. There are many
such ways that two cards could appear in the same hand. One such way is that cards a and b are respectively the first
and second cards in player A’s hand – the chance of this happening equals

(probability that A’s first card is a)× (probability that A’s second card is b given that A’s first card is a) = 1

52
× 1

51

as there are 52 cards in the deck, and because, once we know the first card to be a, then the second card can be one
of the remaining 51 cards.

All these many different ways are equally likely – so to find the total probability we need only count the number of
different ways and multiply by the above probability. We note

total number of different ways cards a and b appear in the same hand

equal
4× total number of different ways cards a and b appear player A’s hand,

as the four players are all equally likely to get both cards. Then the above equals

4× number of places a can take in A’s hand × number of places b can take in A’s hand given a is already there,

which equals 4× 13× 12, because there are 13 cards in A’s hand, and once one of these has been chosen to be a there
are 12 remaining cards which can be card b.

Finally then we see the total probability is
4× 13× 12
52× 51 =

12

51

and we see that the answer is (b).
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2. (a) By inspection x2 + 3x − 10 = (x+ 5) (x− 2) . (Of course you could use the quadratic formula if you failed to
spot the roots.)

(b) We are told that for all values of x,

x3 + ax2 + bx+ c = (x− α) (x− β) (x− γ)

=
¡
x2 − (α+ β)x+ αβ

¢
(x− γ)

= x3 − (α+ β + γ)x2 + (αβ + βγ + γα)x− αβγ.

Because this is an identity we can compare the coefficients of the powers of x and we see

a = − (α+ β + γ)

b = (αβ + βγ + γα)

c = −αβγ.

(c) We are told that the equation x3 + bx+ 2 = 0 has exactly two distinct roots – i.e. one of the roots is repeated.
Let’s call the repeated root α and the other root β. Looking at our fomula from part (b) above, we see that

− (2α+ β) = 0

α2 + 2αβ = b

−α2β = 2.

If we substitute β = −2α from the first equation into the second two, we see that

−3α2 = b and 2α3 = 2,

and we see that these have a solution when α = 1 and b = −3. So the required value of b is −3.
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3. (a) Consider the two curves y = 6x2 and y = x4 − 16. To find their intersections we can eliminate y and see that
x must satisfy

x4 − 16 = 6x2.
Rearranging we see that

0 = x4 − 6x2 − 16 =
¡
x2 − 8

¢ ¡
x2 + 2

¢
.

The only real solutions of this equation are x = 2
√
2 and x = −2

√
2. Their respective y values are both 48 and so the

two points of intersection are ³
−2
√
2, 48

´
and

³
2
√
2, 48

´
.

(b) A sketch of the two graphs should look something like:
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(c) The region enclosed by the two curves lies in the range −2
√
2 ≤ x ≤ 2

√
2, and the height of the region in this

range is 6x2 −
¡
x4 − 16

¢
for each value of x in this range. So the enclosed area is given by the integral

Z 2
√
2

−2
√
2

¡
6x2 − x4 + 16

¢
dx =

∙
2x3 − x5

5
+ 16x

¸2√2
−2
√
2

= 2

Ã
2
³
2
√
2
´3
−
¡
2
√
2
¢5

5
+ 16

³
2
√
2
´!

= 2

Ã
2× 16

√
2− 128

√
2

5
+ 32
√
2

!

=
384
√
2

5
.
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4. (a) The line y = mx+ c passes through the point (1, 1) if 1 = m+ c, i.e. if c = 1−m.

(b) We are told that L is a line through the point (1, 1) which has positive gradient m > 0. So the equation of L is

y = mx+ (1−m) .

Now the line L0, we are told, is perpendicular to L and hence the gradient of L0 is −1/m. The equation of L0 is then
of the form

y =
−1
m

x+ c0

for some value c0. As we are also told that L0 also passes through the point (1, a) (where a 6= 1), then we see that

a =
−1
m
+ c0 and so c0 = a+

1

m
.

So the two equations of our lines L and L0 are respectively

y = mx+ (1−m) and y =
−x
m
+

µ
a+

1

m

¶
.

(c) To find their intersection we can eliminate y and we have

mx+ (1−m) =
−x
m
+

µ
a+

1

m

¶
,

which becomes µ
m+

1

m

¶
x = m+

1

m
+ a− 1,

and hence

x = 1 +
m (a− 1)
m2 + 1

.

We are asked for the area of the triangle which has this point of intersection as a vertex, and (1, 1) and (1, a) as the
other two. If we think of the line segment between (1, 1) and (1, a) as the base of the triangle then the height of the
triangle is ¯̄̄̄µ

1 +
m (a− 1)
m2 + 1

¶
− 1
¯̄̄̄
=

m |a− 1|
m2 + 1

.

Hence the area of the triangle is

1

2
× base× height =

1

2
× |a− 1| × m |a− 1|

m2 + 1

=
m (a− 1)2

2 (m2 + 1)
.
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A sketch with m = 2 and a = 4

(d) As the angle at the intersection of L and L0 is a right angle, then the triangle can only be isosceles by the other
two angles being π/4. This happens when the gradient of L is m = 1.
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5. (a) If we choose co-ordinates for the cube’s corners then we can assume

A = (0, 0, 0) and B = (1, 1, 0) .

By walking along a single rod, the ant will change precisely one of its co-ordinates by 1. So we can see that at least
two rods must be used in any path because the co-ordinates of A and B differ in two variables. Such paths of length
two clearly exist such as

A = (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0) = B, and

A = (0, 0, 0)→ (0, 1, 0)→ (1, 1, 0) = B,

and these are the only such paths of length two, as the ant has only two moves with which to change the x and y
co-ordinates.

(b) and (c) Firstly we note that all paths must be of even length: to see this, note that after an odd/even number of
moves, the sum of the co-ordinates of the point the ant is currently at will be odd/even. As B’s co-ordinates add up
to two then an even number of moves must be needed.

We now introduce some notation to simplify our descriptions of paths. We shall use the letters x, y and z to respectively
denote a move that changes the co-ordinates of the ant in the x, y or z direction. So for example, the two shortest
paths above would be denoted as xy and yx. Similarly zxzy would denote the path

A = (0, 0, 0)→ (0, 0, 1)→ (1, 0, 1)→ (1, 0, 0)→ (1, 1, 0) = B.

We see the paths of length four are denoted by words which contain two zs, one x and one y. This is because it is
impossible to have a path of length four in the z = 0 face without repeating a corner and if the ant moves onto the
z = 1 face it must later move back. Further the two zs cannot be consecutive, as this would also result in a repeated
vertex. So the paths of length four are

zxzy, zyzx, zxyz, zyxz, xzyz, yzxz,

and we see there are six such paths.

Consider now the paths of length six. Again there must be an even number of zs to get onto and away from the z = 1
face. There must be at least two, but there cannot be four, or else the ant would repeat a point because two of these
zs would again be consecutive – so there are exactly two zs in these paths. Further, there must be an odd number of
xs and an odd number of ys if, overall, the x and y co-ordinates are each to change from 0 to 1. So we will need three
xs and one y, or vice-versa. Again we will need to avoid consecutive moves of the same type. Finally note that the
word cannot begin xy, or yx, as this would mean that the ant arrives at B after only just two moves. Similarly they
cannot end xy or yx, as this would mean that the ant had returned to A two moves before the end. To place three xs
(say) in a non-consecutive fashion then they have to be put as

x ∗ x ∗ x ∗ or ∗ x ∗ x ∗ x or x ∗ ∗x ∗ x or x ∗ x ∗ ∗x.

Let’s look at the potential paths of length six which involve three xs. These are

xzxyxz, zxyxzx, xzyxzx, xzxyzx.

It is then easy to check each path out as having no repeats. There are also the four corresponding paths that involve
three ys and one x – in total then there are eight paths of length six.

Are there paths of longer length? It is easy to see that there can be no paths of length greater than eight, because
only one of the three rods connected to A and only one of the three at B can be used by the ant without causing a
repeat. This means that at most eight of the rods could possibly be used in a path with no repeats. But if we also
note that the ant could not use all four of the edges that lie in the z = 1 plane, without again causing a repeat, then
we see that a path of length eight with no repeats is also impossible.
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Here are sketches of some paths of lengths two, four and six.
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N.B. This level of analysis in parts (b) and (c) was not expected in answer to this question when it was set as part of
the Entrance Test. The answer has been presented this way to show how the question can be systematically answered.
For the Test it would have been perfectly satisfactory to count up the number of paths of each length and to present
an answer without any further justification.

(d) Besides A and B there are six other vertices on the cube. If we had a path that began at A, passed through these
six vertices exactly twice, and then moved to B we would have a path that (counting repetitions) had passed through
fourteen vertices. We have already noted that a path from A to B uses an even number of rods and hence passes
through an odd number of vertices – so no such path is possible.

(These sample solutions have been produced by Dr. Richard Earl, who is the Schools Liaison and Access for mathe-
matics, statistics and computer science in Oxford. Any questions regarding the test, applying to Oxford to read for
these subjects, or comments on these solutions, would be welcome at earl@maths.ox.ac.uk)
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